

A Phase Diversity Sensor to Measure Piston Misalignment on the Keck II Segmented Mirror

Alex Harwit

Mats Löfdahl Rick Kendrick John Seldin* Richard Paxman* Scott Acton* Alan Duncan

Lockheed Martin Advanced Technology Center 3251 Hanover Street (O/H1-54, B/202), Palo Alto, CA 94304 (415) 424-3122 - Phone (415) 354-5400 - FAX

alex.harwit@LMCO.COM

* ERIM, Ann Arbor, Michigan 48113 + Keck Observatory, Kamuela, HI 96743

Presented at: NGST Technology Challenge Review

Goddard Space Flight Center, Greenbelt, MD

July 7-10, 1997

- Motivation (Relevance to Space Programs)
- Introduction to Phase Diversity
- Phase Diversity Sensor Design
- Experiment Layout (Drawings)
- Experiment Installation on Keck II
- Summary

Scaling of a Mirror or Lens

Want to change:

\$ (Performance)

\$ (Cost, Size, Weight, Power)

Scaling of a Mirror or Lens

Performance – Resolving Power = d / (1.22)

 $Cost - Size - Weight - (d)^3$

Advantages of a Multiple Aperture or Sparse Aperture Mirror / Lens

Simple Mirror or lens

Multiple Aperture Advantage

Resolving Power Ú d/(1.22)

Weight Volume d^2 (Since L, W d; H = Constant)

Sparse Aperture Advantage

Problem:

How does one align a multiple or sparse aperture mirror in a telescope?

Solution:

- 1. Generate a reference beam to measure tilt and piston
 - a. Artificial guide star with a Hartmann sensor
 - b. Outgoing wave front interferometer
- 2. Use photons from viewed object
 - a. Hartmann Sensor / Edge Sensors (Tilt / Piston)
 - b. Shearing Interferometer
 - c. Utilize an approach called Phase Diversity (PD)

- 1. Generate a reference beam to measure tilt and piston
 - a. Artificial guide star with a Hartman sensor
 - b. Outgoing wave front interferometer

A locally generated
reference beam adds
complexity, weight, and
cost to an imaging
system.

- 2. Use photons from viewed object
 - a. Hartmann Sensor / Edge Sensors (Tilt / Piston)
 - **b.** Shearing Interferometer

Require reimaging optics which add complexity, weight, and cost.

c. Utilize a technique called Phase Diversity (PD)

- System presented today

Many NGST design concepts rely on segmented primary mirrors (GSFC)

- Motivation (Relevance to Space Programs)
- Introduction to Phase Diversity
- Phase Diversity Sensor Design
- Experiment Layout (Drawings)
- Experiment Installation on Keck II
- Summary

Phase Diversity Technique:

- a. Collect an in-focus image
- b. Collect an out-of-focus (diverse) image

c. Utilize a phase diversity algorithm to measure the wavefront error.

Algorithm Design:

A variety of Phase Diversity algorithms are in use today

- ---> all are scene independent
- a. ERIM Paxman, Seldin,
- b. Stockholm Observatory Löfdahl, Sharmer
- c. Lockheed Martin (GRNN) Kendrick, Acton, Duncan, ...

Basic to all algorithms:

Let: Q(f) = Fourier Transform of Object

 $S_0(f)$ = Fourier Transform of Focused Image

 $S_d(f)$ = Fourier Transform of Defocused Image

 $H_0(f)$ = Optical Transfer Function (OTF) of Focused System

 $H_d(f) = OTF \text{ of Defocused System}$

Minimize a metric similar to the Golsalves metric.

$$E = \frac{ |S_0(f) \stackrel{\wedge}{H_d(f)} - S_d(f) \stackrel{\wedge}{H_0(f)}|^2}{|\stackrel{\wedge}{H_0(f)}|^2 + |\stackrel{\wedge}{H_d(f)}|^2}$$

(^) denotes the OTFs are working estimate

Generate Sharpness and Power Metrics
Solve using a General Regression Neural Network

Sharpness Metric =
$$\frac{S_0(f) S_d^*(f) - S_0^*(f) S_d(f)}{S_0^*(f) S_0(f) + S_d^*(f) S_d(f)}$$
Power Metric =
$$\frac{S_0(f) S_0^*(f) - S_d(f) S_d^*(f)}{S_0(f) S_0^*(f) + S_d(f) S_d^*(f)}$$

GRNN: General Regression Neural Network Solve for Y₀ given an N element training set.

$$Y_{0} = \frac{i=1}{N}$$

$$exp(-R_{i}^{2}/2)$$

$$exp(-R_{i}^{2}/2)$$

$$i=1$$
where, $R_{i}^{2} = (X_{i}-X_{0})^{T}(X_{i}-X_{0})$

 R_i = Euclidean distance from X_0 to each of the X_i points.

- determines the width of influence of each data point.

 (X_i, Y_i) is a training set pair: $X_i = Metric$, $Y_i = Aperture Configuration$

 (X_0, Y_0) : X_0 = Measured Metric, Y_0 = Calculated Configuration

--> Detailed algorithm design is a topic of the next talk <--

Outline

- Motivation (Relevance to Space Programs)
- Introduction to Phase Diversity
- Phase Diversity Sensor Design
- Experiment Layout (Drawings)
- Experiment Installation on Keck II
- Summary

Phase Diversity Sensor Design

Design Issues:

- 1. Critical Sampling on Camera Pixels (F# of system)
- 2. Amount of Defocus
- 3. Sensor Optics Layout
- 4. Optical Designs (Telecentric)
- 5. Acquisition Parameters:
 - a. Filter Spectral Bandwidth (nm)
 - b. Camera Shutter Speeds (ns)
 - c. Neutral Density Filters
- 6. Environment (High Altitudes, Low Temperatures)

Critical Sampling of Images

Require camera to critically sample the images:

Math:

OTF = H() = Ap(d), where $d_i = \text{image dist.} = f \text{ (for an object at)}$

Now: MTF = 0 at = max

 $==> Ap(f_{max}) = Ap(2r_{max}) = 0; ==> f_{max} = 2r_{max}$

Critical sampling: $_{max} = 1/(2h_{max})$, h =pixel pitch (Nyquist Theorem)

Airy Disk Diameter = $2.44 f/2r_{max} = 2.44 f/(f_{max}) = 4.88 h_{max}$

===> Airy Disk Diameter = 4.88 * Pixel Pitch

Critical Sampling on Camera Pixels

Critical sampling occurs when the Airy disk diameter is sampled by 4.88 pixels

<u>Set</u>: 4.88 = Airy disk diameter / pixel pitch = [2.44 * (F/#) *] / [h] where h is the pixel pitch

Given , h:

For critical sampling or better: $(F^{/\#}) > 2 h /$

For the 900 nm sensor with 6.8 μ m pixels: (F/#) > 2 h / = 15.1 For the 1662 nm sensor with 50 μ m pixels: (F/#) > 2 h / = 61.7

Note: (If Define: $Q^{/\#} = (/D) * (f/h)$, then $Q^{/\#} = 2$ corresponds to critical sampling).

Phase Diversity Amount of Defocus

The amount of defocus at the two wavelengths is determined from:

- 1. Simulations
- 2. Empirical Data from Processing Images

For the two sensors described above:

- 1. At 900 nm, 1.9 waves of defocus was used
- 2. At 1662 nm, 1.0 waves of defocus was used

Number of waves of defocus = $Z / [8 (F^{/\#})^2]$

where, Z = displacement along the optical axis

Phase Diversity Sensor Optics Layout

Phase Diversity Sensor 1: $(F\# = 15, Camera pixel pitch = 6.8 \mu m, = 900nm)$

Proposed Phase Diversity Sensor 2: $(F\# = 62, Camera pixel = 50.0 \mu m, = 1662nm)$

Only one camera is needed for each PD sensor; both beams projected onto same array.

PD Sensor (1662 nm)

Side View

Optical Designs (Telecentric)

Normal (Scanner):

Size of in-focus image Size of out-of-focus image

Telecentric (Scanner):

Size of in-focus image = Size of out-of-focus image

A "Telecentric Stop" may also be used.

Acquisition Parameters

Filter Spectral Bandwidth (nm)

- filter bandwidth is 10 nm (at a pass wavelength of 900 nm)
- dispersion < 0.002 arcseconds when 20 degrees off the zenith
- this is less than 10 % of the diffraction spot size
- this results in about a 10 % elongation of the diffraction-limited PSF
- will view objects less than 20 degrees off the zenith

Camera Shutter Speeds (ns)

- Keck studies of speckle use 134 ms exposures at $= 2.2 \mu m$
- at = 900 nm this corresponds to about 55 ms exposures
- ==> use exposures less than 50 ms
- On Photometrics camera, the minimum exposure time is 14 ms

Neutral Density Filters

- use neutral density filter set to adjust exposure
- Fused Silica, Surface Flatness: 2 per 25 mm
- Set contains: Nominal Densities of 0.03, 0.1, 0.3, 0.5, 1.0, 2.0, 3.0

Environmental Effects

High Altitude (13,780 feet)

- Most hard drives not rated above 10,000 feet
- Mountain Optech
 - High altitude magnetic hard drive
 - 2.0 GByte
 - Rated to 20,000 feet
- Pinnacle Micro: Magneto-Optical Drive
 - Vertex 2.3 GByte
 - Two sided cartridges
 - Store 1.15 GByte / Side
 - Rated to 20,000 feet

Low Ambient Temperatures (-5 °C)

- All equipment functioned at these temperatures

Outline

- Motivation (Relevance to Space Programs)
- Introduction to Phase Diversity
- Phase Diversity Sensor Design
- Experiment Layout (Drawings)
- Experiment Installation on Keck II
- Summary

Experiment Schematic

Experiment Layout

Top View

Experiment Layout

Top-Side View

Breadboard Mounting to Left Nasmyth Platform of Keck II

Top-Side View

Photo: Optical Breadboard

Top View

Photo: Optical Breadboard

Top Side View

- Motivation (Relevance to Space Programs)
- Introduction to Phase Diversity
- Phase Diversity Sensor Design
- Experiment Layout (Drawings)
- Experiment Installation on Keck II
- Summary

Keck Telescope: Location and Specifications

Keck

Telescope Specifications:

Primary Mirror Diameter = 10 meters

Primary Mirror Focal Length = 17.5 meters

Nasmyth Focus: F/# = 15, f = 149.6 m, Field Diameter = 20 arcmin

Primary Mirror is composed of 36 Hexagonal Segments Segments: Zerodur, 1.8 m diameter, 75 mm thick, Weight = 880 lbs

Photo: Keck Telescopes

Photo: Keck Dome

Photo: Keck Model

Photo: Experiment Support Structure

Outline

- Motivation (Relevance to Space Programs)
- Introduction to Phase Diversity
- Phase Diversity Sensor Design
- Experiment Layout (Drawings)
- Experiment Installation on Keck II
- Summary

Experiment on Support Structure on Left Nasmyth Platform of Keck II

A Phase Diversity Sensor to Measure Piston Misalignment on the Keck II Segmented Mirror

Alex Harwit

Mats Löfdahl Rick Kendrick
John Seldin* Richard Paxman*
Scott Acton* Alan Duncan

Lockheed Martin Advanced Technology Center 3251 Hanover Street (O/H1-54, B/202), Palo Alto, CA 94304

(415) 424-3122 - Phone (415) 354-5400 - FAX alex.harwit@LMCO.COM

* ERIM, Ann Arbor, Michigan 48113

⁺ Keck Observatory, Kamuela, HI 96743

Photo: Optical Breadboard - Top View

Photo: Optical Breadboard - Top Side View

Photo: Keck Telescopes

Photo: Keck Dome

Photo: Keck Model

Photo: Experiment Support Structure

Experiment on Support Structure on Left Nasmyth Platform of Keck II